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Goal To generate high-quality textual descriptions for images by developing a
lightweight, computationally efficient method that effectively bridges the
‘modality gap’ (the misalignment between visual and textual representations)
found in pre-trained Large Multimodal Models (LMMs).

Problem Settings: Pre-trained LMMs like CLIP suffer from a modality gap,
where visual and text embeddings are not perfectly aligned in the common
embedding space.

This misalignment harms the performance of retrieval-based methods for tasks like image
captioning.

Existing solutions such as full fine-tuning or end-to-end training, are computationally
expensive, impractical, and require extensive domain-specific data.

Contributions:

MRAG-gim, a lightweight, training-free approach that uses
Retrieval-Augmented Generation (RAG) and a simple linear mapping to bridge
the modality gap.

A novel iterative technique (Algorithm 2) that uses synthetic descriptions
generated by an LLM to augment the training data and progressively optimize
the linear mapping.

Demonstration that the linear mapping retains semantic meaning by evaluating
it with a user-behavior-driven metric (hnDCG) alongside standard captioning
metrics.

The mRAG-gim approach is divided into two main stages, with an optional refinement
loop.
Stage I: Aligning Visual & Textual Space (Mapping)

Objective: To create a training-free mapping L), that projects the visual

embedding space onto the textual embedding space.

@ Use a pre-trained CLIP model to extract image embeddings (v;) and text embeddings (e;)
from the training dataset .S, ..

® Compute the linear mapping L, using Ordinary Least Squares (OLS) by finding a
closed-form solution that minimizes the objective:
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Stage II: Retrieval-Augmented Generation (Inference)

Objective: To generate a new textual description for a given input image X.

@ Embed the input image using the image encoder: v = &;x(X).

® Apply the mapping to project the image embedding into the text space: L,v.

® Use this mapped embedding L,,v to retrieve the Top-k most similar textual descriptions
D = {d;, d,, ..., d;;} from a vector database (using cosine similarity).

O Feed these retrieved descriptions D as a context prompt, along with an instruction (e.g.,
“Show similar images: The image describes:”), into an instruction-tuned LLM (FLAN-T5) to
generate the final description.

1 Table 3: Tokens ranking from the visual feature space to the
| input of FLAN-TS5 textual feature spaces for mappings (OLS)
| evaluated on MSCOCO external validation data. Cyan bold
| text indicates optimal captioning performance across CLIP

Stage I: Aligning Visual & Textual Space

A person in the
T CLIP Text air, upside down
Mapping Encoder while outside

00
Stage Il: Retrieval-Augmented Generation

Retrieve P1: A man on a bicycle riding next to a train ) _ _

_ closely __ y]p2: A woman riding a bike down a street next to a train Instruction AR el T el
related P3: A man is riding a bike along a train -tuned LLM nextto a train
tokens

Vector Database (Faiss) Context Prompt Generated Description

NDCG@ 100
0.592+0,094

‘ | CLIP Visual ) )
._ Encoder Al

=0,
0.376:0.066

oOoooo
oOoooo

0,7
I.Qﬂ‘l

CLIP Visual Linear
Encoder Mapping

Continuous Refinement (Algorithm 2): This is an iterative process to further
improve the mapping L.

©® Generate: Use the current mRAG-gim model to generate synthetic
descriptions for the training set.

® Filter: Evaluate the synthetic descriptions against reference captions using a
quality metric (e.g., CIDEr-D) and discard any that fall below a computed
average score.

® Augment: Add the high-quality synthetic descriptions to the training set S;uin
and the vector database.

o Retrain: Re-compute the linear mapping L;; on the newly augmented dataset.
This loop is repeated until performance on a validation set plateaus.

Algorithm 1 mRAG-gim: RAG-based Visual Descriptions

Input: Image encoder 7, text encoder @, training data S;p 5, =(Xj, T;), test data Spegp = {Xj ), LLM(-)

as generative model, hyperparameter k, prompt P
S .
: {HI:EI}L=THI"| — Q1 (X;), oTE(T;) for (X;,T;) € Strain
: Lpg « fit linear mapping({ﬂi, Ei}}
: VD « {Ei}

> Incorporate training data

> pre-compute mapping scheme

& Initialise vector database with training text descriptions

: {LM 0; }LiﬁESH — iﬁ{}fj} for {Xj* Tj) € Stest P Incorporate unseen images from test set in CLIP space
‘ {E}_j } — tupk({LMﬂj 1, VD, k)
. {QJ} «— LLM( concatenate(P + ﬂj}}

Output: {G g }

& top-k descriptions to retrieve from vector database

N o= e Do

> Generate new textual descriptions
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Algorithm 2 Continuous Refinement for Retrieval Augmentation

Input: Image encoder @, text encoder @, training data Sy, ;j5,=(X;, T;), validation data S, ,; = {X_} ),
LLM(-) as generative model, hyperparameter k, prompt P

S .
: {”i-'f"f'i}lem”1| — Oy (X;), 2TE(T;) for (X;,T;) € Strain

1 > Incorporate training data
2: L M ¢« fit linear mapping ( {ﬂi= €j }} & Pre-compute mapping scheme
3: VD « {Ei} & Initialise vector database with training text descriptions
4: T eval(Sy, 47, PrE. Lag, LLM, VD) > Evaluation on the validation data
5: for _inrange(n) do

6: {D;} « topk({Lpqv;}, VD, k) & Top-k descriptions to retrieve from vector database
7: {G _}} «— LLM( concatenate(P + D j )) > Generate new textual descriptions
8: {G J} «— filter (G i T) > Remove de-duplicate descriptions based on 7

S, .
9: {E‘ ] }L=t1rﬂlﬂ| — Qrp(uy) for (uy) € D > Incorporate new generated descriptions

> Add generated descriptions to database

10: VD« VDU {¢;}
S :
11: {HI,EI,EI}LJI:'IHIH{ — eg for (Ef} c {Ef}
12: Lpg « fit linear mapping({ﬂi, €, €] }}
13: T — Evall:Eﬂﬂi,@IE,LM,LLM,m}
14: end for

= Augment training data

&> Recompute mapping scheme

> Update average metric

Table 1: Quantitative comparison against state-of-the-art methods on two multimodal datasets. | depicts the training time on
CPU, and 7 is the training time in multiple of n iterations to run the Algorithm 2. The metric scores on MSCOCO and Flickr30k
test sets are in-domain and out-domain data (T is better). The CLIP-score (C-S) and RefClip (RC) [10] is for the ablation analysis.
Bold (in cyan) indicates the best results among baseline methods. The green shaded cells are for mRAG-gim without linear
mapping, whereas the yellow shaded cells are with linear mapping.

Datasets MSCOCO ‘ Flickr30k Training Ablation (CIDEr-D) | Ablation Test (CLIP-score/RefClip)
Method B@4 S C-D S C-D (Params,Time) | in-domain out-domain C-D S C-S/RC
ClipCap [23] 33.5 21.1 113.1 15.8 57.9 | 43M,1.4hr(L4) - - 15.8:0.1 5.8+0.1 75.6, 79.1
SmallCap [26] 36 21 117.4 - 1.8M,13hr(L4) 554 522 | 178102 6.6x0.2 75.9,79.4
Llama-AdapterV2 [7] 36.2 - 122.2 - - 14M, - - - 80.0407 18.440.1 79.3, 80.2
mRAG-gim | 313402 2L1ig2 IM8s-10s" | 56.9:14 432412 | 47.0203 14102 73.7,78.1
mRAG-gim+Alg. 2 | 29.0004 21.640.1 E 1M,8s-10s"" NGO 451415 | 414402 129401 72.8, 77.2

Table 2: LLM evaluations on the MSCOCO validation set pro-
vided standard errors for all models.

LLMs B@1 B@2 R-L C-D S Params
FLAN-T5-small 57.6402 21.240.2 54.2.0 9 90.240 ¢ 20.640 1 60M
FLAN-T5-base 60.4,¢ - 22.540.4 54.9.¢ 923,04 20.6.¢9 1 220M
FLAN-TS-large | EEMISEOS SISO OGS0t 770V

FLAN-T5-x1 76.0+0.1 29.8403 57.040.3 103.4:1 ¢ 20.640 2 3B
FLAN-T5-xx1 64.240 1 23.540.2 54.640 1 94.7 10 2 - 401 11B
DeBERTaV3-base [9] 59.2403 22.14+0.4 54.7 103 91.240. 2 20.940 3 86 M
LLaMa [31] 63.8405 27.6405 90.24+03 89.24009 19.4.9 3 7B
Results for the most similar-to-dissimilar (S2d) descriptions ordering in the Prompt
Most S2d 77.440 1 30.449 1 38.04¢ 3 105.64¢ ¢ 21.0403
d2S 77.8+01 30.5+0.1 58.140 3 106.349p 9 214,03

Figure 1:0ur method (mRAG-gim) generates textual descriptions using MSCOCO validation images, em-
ploying our computed mapping derived from the MSCOCO training set.

Extreme Efficiency: The linear mapping (with 1M parameters) trains in 8-10
seconds on a CPU. This is orders of magnitude faster than the SmallCap
baseline, which requires 13 hours on an L4 GPU.

Competitive Performance: mRAG-gim achieves performance close to the
SOTA lightweight SmallCap method on the SPICE metric.

Refinement Boost: The continuous refinement (Alg. 2) significantly improves
out-of-domain generalization, achieving a CIDEr-D score of 60.2 on the
Flickr30k ablation, surpassing SmallCap (52.2).

Metric Mismatch: The study confirms that unsupervised metrics like
CLIP-score correlate poorly with supervised, reference-based metrics (like
CIDEr-D), suggesting they can be misleading.

Recency Bias: Altering the order of retrieved descriptions in the prompt (e.g.,
similar-to-dissimilar vs. dissimilar-to-similar) impacts LLM output, confirming

mMRAG-gim is a RAG-based approach that successtully generates high-quality visual de-
scriptions by using a simple, training-free OLS linear mapping to bridge the LMM modality
cap. By retrieving captions to use as context prompts for an LLM, the method achieves
competitive performance against more complex lightweight methods.

The proposed continuous refinement process iteratively enhances the mapping using high-
quality synthetic captions. Most importantly, the approach is exceptionally computation-
ally efficient, enabling the use of smaller LLMs (like FLAN-T5) and democratizing high-
performance image captioning for users with limited computational resources.
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