

Lightweight Adaptation of Neural Language Models via Subspace Embedding

Introduction & Problem Formulation

Goal: To reduce the word embedding size in pre-trained language models by representing each word with composition of f low-dimensional embeddings shared between vocabulary.

Spotlight:

- Substantially alleviates the number of embedding parameters in the embedding part through Cartesian product.
- Solves the out-of-vocabulary problem in the (masked) language models. • Subspace embeddings achieve compression rates beyond 99.8% in comparison with the original embeddings for the language models on XNLI and GLUE benchmark suites.

Our Approach & Experiments

Techniques for Embedding Compression:

Algorithm 1 Assign Subspace Embedding Arbitrarily **Input:** *D* number of embeddings with dimension *d*, and set of subspace embeddings F 1: $Q \leftarrow [D^{1/f}]$ number of each subspace embedding 2: Initialise f-th Q subspace embedding vectors $\{v_q^f \in \mathbb{R}^{\frac{a}{f}}\}_{q=1}^Q, \forall f \in \mathbb{R}^{\frac{a}{f}}\}_{q=1}^Q$ $\{1,\ldots,F\}$

Algorithm 2 Cluster-based Subspace Embedding

Input: *D* number of embeddings, *Q* number of subspace embeddings, *d* dimension of embedding, and number of subspace embeddings set F, the pre-trained embedding model $\mathcal{L}_P = \{p_n\}_{n=1}^D$ 1: Initialise f-th Q subspace embedding vectors $\{v_q^f \in \mathbb{R}^{\frac{a}{f}}\}_{q=1}^Q, \forall f \in \mathbb{R}^{\frac{a}{f}}\}_{q=1}^Q$ $\{1, ..., F\}$ 2: $c_f(n) \leftarrow 0, \forall f = 1, \dots, F, n = 1, \dots, D$

Problem Settings:

- Subspace Embedding (SE) describes the latent space of contextual elements within a token, where each element composes to form the original embedding.
- SE create an arbitrary-sized vector of each word that incorporates semantic relationships.
 - We arbitrarily assign the subspace embedding to each token based on its index and perform a Cartesian product with subspace embedding to construct embedding vectors

3: for $n = 1, 2$	P_1,\ldots,D do			$2: c_f(n) \leftarrow 0, \forall j = 1,, r, n = 1,, D$						
4: for f =	$1, 2, \ldots, F$ do			3: for $f = 1, 2,, F$ do						
5: $c_f($	$n) = (n/Q^{f-1}) \mod$	d Q^f		4: extract distinct tuples from $\{\mathcal{F}(n)\}_{n=1}^{D}$						
6: end for	r			5: for distinct $\mathcal{F}(n^*)$ in $\{\mathcal{F}(n)\}_{n=1}^D$ do						
7: $v_n = \oplus$	$f_{f=1}^F v_{c_f(n)}$			6: if $f \neq F$ then						
8: end for				7: $\{\mathcal{L}_P\}_{\mathcal{F}(n^*)} \leftarrow \{p_n : \mathcal{F}(n) = \mathcal{F}(n^*)\}_{n=1}^D$						
Output: The in	ncorporated embeddi	ng vectors are $\{v_n\}$	${}^{D}_{n=1}$.	8: alter k-means algorithm to $\{\mathcal{L}_P\}_{\mathcal{F}(n^*)}$						
_			-	9: the outcomes labelling to $c_f(n)$, where $\mathcal{F}(n) = \mathcal{F}(n^*)$						
Languag	e Model Set	tings:		10: else						
0 0		0		11: $c_f(n) \leftarrow$ arbitrary number among Q candidates						
Table 1: Des	cription of the al	tered neural la	nguage	. 12: end if						
NLMs	Vocabulary Size	# Embeddings	0	$\mid \theta_v \mid$						
RoBERTa _S	50k	50k	51M	25.7M	13: end for					
+2-SE	50k	225	26M	115k	14: end for					
+3-SE	50k	37	26M	18.9k	15. Collect $n = \Phi^F$ $n = V n \in \Phi$					
+8-SE	50k	4	26M	2k	15: Collect $v_n = \bigoplus_{f=1}^{n} v_{c_f(n)}, \forall n \in \mathcal{P}$					
XLM-R _S	250k	250k	154M	128M	Output: The incorporated embedding vectors are $\{v_{ij}\}^D$					
+3-SE	250k	63	26M	32k	$ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _$					

Results on the GLUE Benchmark:

Table 2: Results of Arbitrarily Dispersed Subspace Embed- Table 3: Results of the Algorithm 2 on GLUE. Shaded columns in red and yellow colour denote the clustered SE using kding on GLUE. Columns in blue colour follow Algorithm 1. means, and uniform cluster size. Model RoBERTac (Ours) +2-SE +3-SE +4-SE +6-SE +8-SE

- Calibration of Subspace Embedding:
 - Original embedding vectors: E_i , E_j , their SE vectors: $\{v_i^f\}, \{v_i^f\}, \forall i, j \in \{1, 2, ..., D\}$
 - Conditions for uniqueness of partitioned embedding vectors: $f \in \{1, 2, ..., F\}$ such that $\{v_i^f\} \neq \{v_i^f\}$ and $i \neq j$
 - A mapping function to transform original embeddings to subspace embeddings, $\mathcal{F} : \mathcal{P} \to \mathcal{Q} \times \ldots \times \mathcal{Q}$, where a set of the embedding index as $\mathcal{P} \in \{1, 2, ..., D\} \subset \mathbb{N}$ and $Q = \{1, 2, ..., Q\} \subset \mathbb{N}$ depicts a set of each SE vector index
 - Generalise via Cartesian product, $\mathcal{F}(n) = (c_1 \times c_2 \times c_2)$

 $\ldots \times c_f$ (n, \ldots, n)

- We have f distinct $Q \times (d/f)$ embedding table, where each subspace

Inotacet Mouch		RODERIAS (OUIS)	T4-01	1 TJ-JL											
	Dataset	1	0	2	4	6	0	Dataset Model	RoBERTa _S (Ours)	+2-SE	+3-SE	+3-SE	+3-SE	+3-SE	+3-SE
	1	1	4	3	4	0	0	f	1	2	3	3	3	3	3
		50k	225	37	15	7	4					Q=100	Q=200	Q=50	Q=100
	SST-2 [21]	89.8	88.4	88.0	88.1	87.2	88.0	$\mid \theta_v \mid$	25.7M	115k	18.9k	104k	154k	25.6k	51.2k
	Ouora Ouestions ³	86.5	84.0	83.0	83.3	82.6	83.0	%↓	-	99.5	99.93	99.6	99.3	99.87	99.8
	MNLI [28]	79.5	743	73 1	72.8	73 5	73.0	SST-2 [21]	89.8	88.4	88.0	88.2	90.0	89.3	89.3
		17.5	71.5	75.1	72.0	75.5	75.0	Quora Questions ⁴	86.5	84.0	83.0	84.7	85.6	84.5	84.6
	QNLI [19]	88.1	84.0	83.4	84.1	84.1	83.0	MNLI [28]	79.5	74.3	73.1	75.9	77.5	75.8	77.2
	MRPC [9]	88.3	88.0	85.5	87.4	85.2	86.3	QNLI [19]	88.1	84.0	83.4	85.1	85.5	83.5	85.8
	RTE [8]	72.8	66.9	67.8	70.0	67.4	67.8	MRPC [9]	88.3	88.0	85.5	87.3	88.6	87.7	87.3
		00.0	70.0	77.0	70 4	70.5	764	RTE [8]	72.8	66.9	67.8	67.1	69.7	67.9	70.7
	515-B [3]	88.0	79.2	//.3	/8.4	/9.5	/6.4	STS-B [3]	88.0	79.2	77.3	81.6	84.5	80.1	84.8
	CoLA [26]	38.0	35.6	18.5	23.2	25.5	20.0	CoLA [26]	38.0	35.6	18.5	37.5	34.9	33.6	36.7

Results on Multilingual dataset: We use the XLM-R model based on the Unicoder [3] to evaluate a cross-lingual transfer task. Our altered XLM-R_S network with 250k and 63 number of embeddings for 3-SE, and 128 for clustered SE. The performances on English dataset are 74%, 72.6%, and 72.9% for XLM-R_S, 3-SE, and clustered SE. **Conclusion and Future Work:**

- Introduced a novel compact embedding structure, which significantly reducing the number of parameters in neural language models.
- We intend to test and scale our embedding compression techniques on LLMs, catering over 200M parameters.
- We evaluated our compact embedding structure on English/Multilingual datasets. Our main structure of the pre-trained language model for downstream tasks follows RoBERTa
- Subspace embedding representation, v_n $\oplus_{f=1,\ldots,F} v_{c_f(n)}$, where v_n, v_{c_f} are the corresponding embedding vectors and \oplus denotes the concatenation operation.

Contributions

- A word embedding compression method for pre-trained language models (PLMs) that
- allocates shared subspace embedding to the embedding vector in two ways:
 - It allocates sequentially using modulo operation
 - It assigns dispersed subspace embedding using a pretrained language model with contextual information

[1]. Also, we employ XLM-R [2] for performance tests of subspace embedding on multilingual datasets.

References:

- [1] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
- [2] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020, July). Unsupervised Cross-lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).
- [3] Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., & Zhou, M. (2019, November). Unicoder: A Universal Language Encoder by Pre-training with Multiple Cross-lingual Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 2485-2494).