Amit Kumar Jaiswal Haiming Liu

Introduction \& Problem Formulation

Goal: To reduce the word embedding size in pre-trained language models by representing each word with composition of f low-dimensional embeddings shared between vocabulary.

Spotlight:

- Substantially alleviates the number of embedding parameters in the embedding part through Cartesian product.
- Solves the out-of-vocabulary problem in the (masked) language models.
- Subspace embeddings achieve compression rates beyond 99.8% in comparison with the original embeddings for the language models on XNLI and GLUE benchmark suites.

Problem Settings:

- Subspace Embedding (SE) describes the latent space of contextual elements within a token, where each element composes to form the original embedding.
- SE create an arbitrary-sized vector of each word that incorporates semantic relationships.
- We arbitrarily assign the subspace embedding to each token based on its index and perform a Cartesian product with subspace embedding to construct embedding vectors

- Calibration of Subspace Embedding:

- Original embedding vectors: E_{i}, E_{j}, their SE vectors: $\left\{v_{i}^{f}\right\},\left\{v_{j}^{f}\right\}, \forall i, j \in\{1,2, \ldots, D\}$
- Conditions for uniqueness of partitioned embedding vectors: $f \in\{1,2, \ldots, F\}$ such that $\left\{v_{i}^{f}\right\} \neq\left\{v_{j}^{f}\right\}$ and $i \neq j$
- A mapping function to transform original embeddings to subspace embeddings, $\mathcal{F}: \mathcal{P} \rightarrow \mathcal{Q} \times \ldots \times \mathcal{Q}$, where a set of the embedding index as $\mathcal{P} \in\{1,2, \ldots, D\} \subset \mathrm{N}$ and $\mathcal{Q}=\{1,2, \ldots, Q\} \subset \mathrm{N}$ depicts a set of each SE vector index
- Generalise via Cartesian product, $\mathcal{F}(n)=\left(c_{1} \times c_{2} \times\right.$

$$
\left.\times c_{f}\right) \overbrace{(n, \ldots, n)}^{f}
$$

- We have f distinct $Q \times(d / f)$ embedding table, where each subspace
- Subspace embedding representation, $v_{n}=$ $\oplus_{f=1, \ldots, F} v_{c_{f}(n)}$, where $v_{n}, v_{c_{f}}$ are the corresponding embedding vectors and \oplus denotes the concatenation operation.

Contributions

A word embedding compression method for pre-trained language models (PLMs) that

- allocates shared subspace embedding to the embedding vector in two ways:
- It allocates sequentially using modulo operation
- It assigns dispersed subspace embedding using a pretrained language model with contextual information

Our Approach \& Experiments

Techniques for Embedding Compression:

Algorithm 1 Assign Subspace Embedding Arbitra				
Input: D number of embeddings with dimension d, and set of subspace embeddings F 1: $Q \leftarrow\left\lceil D^{1 / f}\right\rceil \quad \Delta$ number of each subspace embedding 2: Initialise f-th Q subspace embedding vectors $\left\{v_{q}^{f} \in \mathrm{R}^{\frac{d}{f}}\right\}_{q=1}^{Q}, \forall f$ $\{1, \ldots, F\}$ for $n=1,2, \ldots, D$ do for $\mathrm{f}=1,2, \ldots, F$ do $c_{f}(n)=\left(n / Q^{f-1}\right) \bmod Q^{f}$ end for $v_{n}=\oplus_{f=1}^{F} v_{c_{f}(n)}$ end for Output: The incorporated embedding vectors are $\left\{v_{n}\right\}_{n=1}^{D}$.				
Language Model Settings: Table 1: Description of the altered neural language models.				
NLMs	Vocabulary Size	\# Embeddings	$\|\theta\|$	$\left\|\theta_{v}\right\|$
RoBERTas	50k	50k	51M	25.
+2-S	50k	225	26M	115k
+3-SE	50k	37	26M	18
+8-SE	50k		26M	2k
XLM-R ${ }_{\text {S }}$	250k	250k	154	128
-SE	250k	63	26M	32k

```
Algorithm 2 Cluster-based Subspace Embedding
Input: \(D\) number of embeddings, \(Q\) number of subspace embeddings, \(d\) dimension of embedding, and number of subspace embeddings set \(F\) the pre-trained embedding model \(\mathcal{L}_{P}=\left\{p_{n}\right\}_{n=1}^{D}\)
1: Initialise \(f\)-th \(Q\) subspace embedding vectors \(\left\{v_{q}^{f} \in \mathbb{R}^{\frac{d}{f}}\right\}_{q=1}^{Q}, \forall f \in\) \(\{1, \ldots, F\}\)
2: \(c_{f}(n) \leftarrow 0, \forall f=1, \ldots, F, n=1, \ldots, D\)
3: for \(f=1,2, \ldots, F\) do
4: \(\quad\) extract distinct tuples from \(\{\mathcal{F}(n)\}_{n=1}^{D}\)
for distinct \(\mathcal{F}\left(n^{*}\right)\) in \(\{\mathcal{F}(n)\}_{n=1}^{D}\) do if \(f \neq F\) then
\(\left\{\mathcal{L}_{P}\right\}_{\mathcal{F}\left(n^{*}\right)} \leftarrow\left\{p_{n}: \mathcal{F}(n)=\mathcal{F}\left(n^{*}\right)\right\}_{n=1}^{D}\)
alter k-means algorithm to \(\left\{\mathcal{L}_{P}\right\}_{\mathcal{F}\left(n^{*}\right)}\)
the outcomes labelling to \(c_{f}(n)\), where \(\mathcal{F}(n)=\mathcal{F}\left(n^{*}\right)\) else
\(c_{f}(n) \leftarrow\) arbitrary number among \(Q\) candidates end if
end for
14: end for
15: Collect \(v_{n}=\oplus_{f=1}^{F} v_{c_{f}(n)}, \forall n \in P\)
Output: The incorporated embedding vectors are \(\left\{v_{n}\right\}_{n=1}^{D}\)
```

Results on the GLUE Benchmark:
Table 2: Results of Arbitrarily Dispersed Subspace Embed-
ding on GLUE. Columns in blue colour follow Algorithm 1.
Table 3: Results of the Algorithm 2 on GLUE. Shaded columns

Dataset Model RoBERTas (Ours)		+2-SE	+3-SE	+4-SE	+6-SE	+8-SE
	1	2	3	4	6	8
	50k	225	37	15	7	4
SST-2 [21]	89.8	88.4	88.0	88.1	87.2	88.0
Quora Questions ${ }^{3}$	86.5	84.0	83.0	83.3	82.6	83.0
MNLI [28]	79.5	74.3	73.1	72.8	73.5	73.0
QNLI [19]	88.1	84.0	83.4	84.1	84.1	83.0
MRPC [9]	88.3	88.0	85.5	87.4	85.2	86.3
RTE [8]	72.8	66.9	67.8	70.0	67.4	67.8
STS-B [3]	88.0	79.2	77.3	78.4	79.5	76.4
CoLA [26]	38.0	35.6	18.5	23.2	25.5	20.0

means, and uniform cluster size.

Dataset Model	RoBERTas (Ours)	+2-SE	+3-SE	+3-SE	+3-SE	+3-SE	+3-SE
	,	2	3	3	3	3	3
				$\mathrm{Q}=100$	$\mathrm{Q}=200$	Q=50	Q=100
$\left\|\theta_{0}\right\|$	25.7M	115k	18.9k	104k	154k	25.6k	51.2k
\% \downarrow		99.5	99.93	99.6	99.3	99.87	99.8
SST-2 [21]	89.8	88.4	88.0	88.2	90.0	89.3	89.3
Quora Questions ${ }^{4}$	86.5	84.0	83.0	84.7	85.6	84.5	84.6
MNLI [28]	79.5	74.3	73.1	75.9	77.5	75.8	77.2
QNLI [19]	88.1	84.0	83.4	85.1	85.5	83.5	85.8
MRPC [9]	88.3	88.0	85.5	87.3	88.6	87.7	87.3
RTE [8]	72.8	66.9	67.8	67.1	69.7	67.9	70.7
STS-B [3]	88.0	79.2	77.3	81.6	84.5	80.1	84.8
CoLA [26]	38.0	35.6	18.5	37.5	34.9	33.6	36.7

Results on Multilingual dataset: We use the XLM-R model based on the Unicoder [3] to evaluate a cross-lingual transfer task. Our altered XLM-R ${ }_{S}$ network with 250 k and 63 number of embeddings for 3-SE, and 128 for clustered SE. The performances on English dataset are $74 \%, 72.6 \%$, and 72.9% for $\mathrm{XLM}_{S}, 3-\mathrm{SE}$, and clustered SE.
Conclusion and Future Work:

- Introduced a novel compact embedding structure, which significantly reducing the number of parameters in neural language models
- We intend to test and scale our embedding compression techniques on LLMs, catering over 200M parameters.
- We evaluated our compact embedding structure on English/Multilingual datasets. Our main structure of the pre-trained language model for downstream tasks follows RoBERTa [1]. Also, we employ XLM-R [2] for performance tests of subspace embedding on multilingual datasets.
References:
[1] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... \& Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
[2] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... \& Stoyanov, V. (2020, July). Unsupervised Cross-lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).
[3] Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., \& Zhou, M. (2019, November). Unicoder: A Universal Language Encoder by Pre-training with Multiple Cross-lingual Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 2485-2494).

