

SCHAEFFLER

Amit Kumar Jaiswal^{*1} Ivan Panshin^{*2} Dimitrij Shulkin^{*3} Nagender Aneja⁴ Samuel Abramov⁵ ¹University of Bedfordshire ²Perm State University ³Schaeffler Group ⁴Universiti Brunei Darussalam ⁵Abramov Software GmbH & Co. KG

Problem Formulation and Contribution

Goal: Identifying metastatic cancer in tiny image patches extracted from large pathological scans of sentinel lymph node sections.

Cancer Detection Task: Consider a binary classification task of small histopathologic images (96 x 96px) which determine the tumor labels $l \in \{0, 1\}$ delineating the absence or presence of tumor tissues.

Contributions: A semi-supervised learning approach that

- magnifies differentiation between low-density classes for incremental training of labeled and unlabeled data simultaneously.
- performs better generalization by enlarging the training set for the proposed model using pseudo labeling [4].
- significantly improves our proposed DenseNet201 based model over the existing baseline published in [1].

Semi-Supervised Learning for Cancer Detection of Lymph Node Metastases

$$\sum_{i=1}^{C} \mathcal{L}(y_i, f_i(x))$$

Experiments & Results

Results on modified PatchCamelyon Benchmark [2]:

51% Test Data	49% Test Data	100% Test Data
0.9768	0.9721	0.9745
0.9764	0.9769	0.9766
0.9748	0.9756	0.9752
0.9758	0.9790	0.9774
0.9784	0.9781	0.9783
0.9786	0.9802	0.9794
		0.9630
	51% Test Data 0.9768 0.9764 0.9748 0.9758 0.9784 0.9786	51% Test Data 49% Test Data 0.9768 0.9721 0.9764 0.9769 0.9748 0.9756 0.9758 0.9790 0.9784 0.9781 0.9786 0.9802

51%

Ensembles:

Model
Ensemble (7 SE-ResNet101)
Best single model (DenseNet201
GDenseNet [1]

Predicted TUMOR **Tissues:**

Conclusion:

Our proposed model is a learning-based, but semi-supervised approach to detect metastatic cancer. • Outperforms strong CNN baseline [1] evaluated on 100% of test data. • Our model can detect cancerous cells in histopathologic images with better performance than human pathologists.

References:

- 210-218). Springer, Cham.

- Learning, ICML (Vol. 3, p. 2).

	1.0
	0.8
tive Rate	0.6
True Posi	0.4
	0.2

Test Data	49% Test Data	100% Test Data
9810	0.9822	0.9816
9786	0.9802	0.9794
		0.9630

Veeling et al. Rotation equivariant CNNs for digital pathology. In International Conference on Medical image computing and computer-assisted intervention (pp.

https://www.kaggle.com/c/histopathologic-cancer-detection/data

[3] Smith et al. (2018). Super-convergence: Very fast training of residual networks using large learning rates.

[4] Lee, D. H. (2013, June). Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation

