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Problem Formulation and Contribution

Goal: Identifying metastatic cancer 1n tiny image patches extracted from large pathological
scans of sentinel lymph node sections.

Cancer Detection Task: Consider a binary classification task of small histopathologic 1m-
ages (96 x 96px) which determine the tumor labels [ € {0, 1} delineating the absence or
presence of tumor tissues.

Contributions: A semi-supervised learning approach that

e magnifies differentiation between low-density classes for incremental training of labeled
and unlabeled data simultaneously.

e performs better generalization by enlarging the training set for the proposed model using
pseudo labeling [4].

e significantly improves our proposed DenseNet201 based model over the existing baseline
published in [1].

Methodology

Network Architecture:
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Supervised Loss Function:
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Semi-Supervised Learning:
One Cycle Policy [3]

The Joint Loss Function:
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Results on modified PatchCamelyon Benchmark [2]:

Samuel Abramov

Model 51% Test Data|49% Test Data|100% Test Data
VGG16 0.9768 0.9721 0.9745
nceptionResNetv2|  0.9764 0.9769 0.9766
Xception 0.9748 0.9756 0.9752
InceptionVa 0.9758 0.9790 0.9774
SE-ResNet101 0.9784 0.9781 0.9783
DenseNet201 0.9786 0.9802 0.9794
GDenseNet [1] 0.9630

Ensembles:
Model 51% Test Data |49% Test Data|100% Test Data
Ensemble (7 SE-ResNet101) 0.9610 D.9622 0.9616
Best single model (DenseMNet201) 0.9786 0.9802 0.9794
GDenseNet [1] 0.9630

Predicted TUMOR Tissues:

(a) Whole Slide Image

Conclusion:

Our proposed model 1s a learning-based, but semi-supervised approach to detect metastatic cancer.

(b) Tissue Mask
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e Outpertorms strong CNN baseline [1] evaluated on 100% of test data.
e Our model can detect cancerous cells in histopathologic images with better performance than human pathologists.
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