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Problem Formulation and Contribution
Goal: Identifying metastatic cancer in tiny image patches extracted from large pathological
scans of sentinel lymph node sections.
Cancer Detection Task: Consider a binary classification task of small histopathologic im-
ages (96 x 96px) which determine the tumor labels l ∈ {0, 1} delineating the absence or
presence of tumor tissues.

Contributions: A semi-supervised learning approach that
• magnifies differentiation between low-density classes for incremental training of labeled

and unlabeled data simultaneously.
• performs better generalization by enlarging the training set for the proposed model using

pseudo labeling [4].
• significantly improves our proposed DenseNet201 based model over the existing baseline

published in [1].

Methodology
Network Architecture:

Semi-Supervised Learning:
One Cycle Policy [3]
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Experiments & Results
Results on modified PatchCamelyon Benchmark [2]:

Ensembles:

Predicted TUMOR Tissues:

(a) Whole Slide Image (b) Tissue Mask

Conclusion:
Our proposed model is a learning-based, but semi-supervised approach to detect metastatic cancer.
• Outperforms strong CNN baseline [1] evaluated on 100% of test data.
• Our model can detect cancerous cells in histopathologic images with better performance than human pathologists.
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