

A Quantum Model for Interactive Search and Retrieval

based on Information Foraging Theory (ESR-3)

Amit Kumar Jaiswal

University of Bedfordshire

Mid-term review meeting, Italy, 07/12/2018

Background

Training Experiences

Workshops and Conferences

- Autumn School [1]
 - Workshop in Luton, UK Academic / Presentation Training
 - Workshop in Cottbus, Germany Academic Training
- Lernen, Wissen, Daten, Analysen (LWDA) 2018, Mannheim, Germany
- The 4th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR) 2018, Tianjin, China

Seminars organized by QUARTZ

- The theory of open quantum systems in cognitive psychology by Irina Basieva, University of Bedfordshire
- Al in the wild by Erik Graf (Cortical.io), University of Bedfordshire

Miscellaneous

Teaching Assistant of Intelligent Systems and Data Mining (MSc level) UoB: Oct 2018 - Present

Foreseen secondments

University of Padova: Early Summer 2019

Quantum Information Access and Retrieval Theor

Research Project - ESR3

A Quantum Model for Interactive Search and Retrieval based on Information Foraging Theory

Ouantum Information Access and Retrieval Theory

Research Objectives

Design and evaluate a Quantum model for Interactive Information Retrieval (IR) based on Information Foraging Theory.

- Combine information foraging theory [3] with quantum IR framework [1,2]
 - Modeling users' search behavior using Hilbert Space: User context, Cognitive process
 - Relevance Feedback (Explicit/Implicit): learning from user interaction [4]
 - Modeling users' evolving information need using Hilbert space formalism [1]
- Effectiveness Evaluation
 - Users: Behavior understanding [3], Modeling/Simulation, Log Analysis
 - Metrics: Session evaluation, Relevance/Satisfaction

QUARTZ MTRM, Padova, 07/12/2018

^{1.} Melucci, M. (2008). A basis for information retrieval in context. ACM Transactions on Information Systems (TOIS), 26(3), 14 2. Frommholz, I., Larsen, B., Piwowarski, B., Lalmas, M., Ingwersen, P., & Van Rijsbergen, K. (2010, August). Supporting polyrepresentation in a quantum-inspired geometrical retrieval framework. In Proceedings of the third symposium on Information interaction in context (pp. 115-124). ACM.

^{3.} Pirolli, P. (2007). Information foraging theory: Adaptive interaction with information. Oxford University Press.

^{4.} Liu, H., Mulholland, P., Song, D., Uren, V., & Rüger, S. (2010, August). Applying information foraging theory to understand user interaction with content-based image retrieval. In *Proceedings of the third symposium on Information interaction in context* (pp. 135-144). ACM.

Methodology/1

Mathematical description of Information Scent

$$S_{ji} \approx \log(\frac{P(i|j)}{P(i)})$$
$$A_i = \sum_{j \in q} \log(\frac{P(i|j)}{P(i)})$$

Information Scent and WWW

Adapted from Pirolli, P. (2009). Information foraging theory: Adaptive interaction with information: Oxford University Press

QUARTZ Ovantum Information Access and Retrieval Theory

Methodology/2

Mapping Information Foraging Theory (IFT) to IR An Analogy

IFT Constructs	Information Retrieval	Web Search
Forager	Searcher	Searcher
Information Patch	Information features	Web Page
Topology	f(document/query space/sim(d,q))	WWW
Information Scent	Information source / snippets (context based)	Searches/Links
Gain	Net retrieved information	Net information increase
Information Diet	SERP/Supporting Information objects	SERPs / Information

Search Behavior Features

(Based on Query Logs)

- QueryActivity
 - Reformulation
 - Pagination
 - Stopping
- Termination
- NumQuery
- NumPagination
- Time
- NumDocument
- NumPrediction
 - \circ Relevant
 - Non-relevant

Ongoing Work/1 Info Scent-intent based model to predict document relevance

Ongoing Work/2 Understanding User Behavior based on Information Foraging Theory

Prediction: The ratio of the movement of the mouse along the two axes X, Y

Button	State
Left	Down
Middle	Drag
No Button	Move
Right	Pressed
Scroll	Released
	Up

Field	Description		
Event	Cursor move or click		
Click Position	x- and y-coordinates of the cursor		
Timestamp	Elapsed time		
Button	Mouse button state		
State	Mouse movement state		
User	User id		
Session	Session id		
Dataset description			

Categorical data types

Amit Kumar Jaiswal, Haiming Liu, Ingo Frommholz Predicting Users' Behavior using Mouse Movement Information: An Information Foraging Perspective. **ACM IUI 2019 Submission**

QUARTZ MTRM, Padova, 07/12/2018

H2020-MSCA-ITN Grant Agreement N. 721321

Ongoing Work/3 - Modeling Information Objects¹ in Hilbert Space

* * * * * * *

QUARTZ MTRM, Padova, 07/12/2018

H2020-MSCA-ITN Grant Agreement N. 721321

Expectations on the possible impact on future career

- Short-term plan
 - Quantum-like user interaction model
 - To address contextuality and order effects in modeling user behavior
 - Dynamic users' information need model based on IFT
 - A first prototypical implementation of a quantum-theoretic framework that incorporates user interaction and behaviours powered by IFT
- Post Ph.D.
 - Interdisciplinary postdoc experience (2+ years)
 - Establish own line of research

Thanks for your time.

Q&A

H2020-MSCA-ITN Grant Agreement N. 721321

