Semantic Hilbert Space for Interactive Image Retrieval
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Goal: To model the user expressive information needs that delineates their cognitive aspects = = Semantic Hilbert Space Model
In an 1mage retrieval task.

Problem Settings: The input consists of a state vectors of image i and a textual query (.
These textual-visual query uses projection operation P(q, %) as (q|¢). The feature space for
both modalities are generated using pre-trained embedding models (£,(.)). The state vector

of retrieved target image (r). The task is framed as a maximisation problem to learn the

O sim(P(q,i;ﬂ),Ep(R))
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Conclusion:

image in a complex-valued space Projective Transformation Symmetry Loss
Function: Our proposed model is a learning-based, but generalised approach that uses Hilbert space formalism [1].
M :RY — Mp e R4 S ) Pl (R a)is) Y Our model captures the implicit contextual information among an image and textual query to enhance the image retrieval.
Pot(Pr) — otM(as) Lpr,. = — Z —logH ; L« The proposed model generalises in a classical manner by representing textual and image queries via modality distribution (projective
ot(Pr) = e S — e eP(9(Ep(R).a5)skp,) transformation).
. ok d Neriplet S e Outperforms strong image retrieval methods [2] on benchmark datasets.
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