



# **Problem Formulation and Contribution**

**Goal:** To model the user expressive information needs that delineates their cognitive aspects in an image retrieval task.

**Problem Settings:** The input consists of a state vectors of image  $\vec{i}$  and a textual query  $\vec{q}$ . These textual-visual query uses projection operation  $\mathcal{P}(q,i)$  as  $\langle q|i\rangle$ . The feature space for both modalities are generated using pre-trained embedding models ( $\mathcal{E}_p(.)$ ). The state vector of retrieved target image ( $\vec{r}$ ). The task is framed as a maximisation problem to learn the multimodal representation



**Contributions:** A quantum-inspired modelling approach [1] to the user multi-semantic information needs that

- present a unified framework SEMANTIC HILBERT SPACE (SHS), to characterise textualvisual (multimodal) information need in an interactive image retrieval task.
- magnifies model capability using a projective transformation strategy that inherently maps the feature space of input image to the target image feature space via complex-valued text encoding.
- significantly improves on MIT States and Fashion200k datasets over the existing deep networks baseline.

# Methodology

### **Feature Embedding:**

- Input Image Feature  $\mathcal{E}_p(i) = i_f \in \mathbb{R}^k$
- Input Textual Feature  $\mathcal{E}_t(q) = q_f \in \mathbb{R}^l$
- Mapping of query image to the target image in a complex-valued space

$$M: \mathbb{R}^d \longrightarrow M_D \in \mathbb{R}^{dxd}$$
$$Rot(P_T) = e^{iM(q_f)}$$

$$M_I : \mathbb{R}^k \longrightarrow \mathbb{C}^d$$
$$I_M = Rot(P_T)M_I(i_f)$$

### **Information Need Function:**

$$g(i_f, q_f) = \alpha f(I_M) + \beta f_l(I_M, i_f, q_f)$$

Project

tive Transformation:  

$$P_T(\overrightarrow{i}) \xrightarrow[q]{\rightarrow} \overrightarrow{r} \implies P_T(\overrightarrow{r}) \xrightarrow[q]{\rightarrow} \overrightarrow{i}$$

**Function:** 

$$\mathcal{L}_{PT_{F}} = \frac{1}{S} \sum_{s=1}^{S} -log \left\{ \frac{e^{\mathcal{P}(g(\mathcal{E}_{p}(R), q_{f}), i_{f_{s}})}}{\sum_{b=1}^{S} e^{\mathcal{P}(g(\mathcal{E}_{p}(R), q_{f}), i_{f_{b}})}} \right\}$$
$$\mathcal{L}_{PT_{MS}} = \frac{1}{S \times n_{triplet}} \sum_{tr=1}^{n_{triplet}} \sum_{s=1}^{S} \log \left(1 + e^{\mathcal{P}(g(\mathcal{E}_{p}(R), q_{f}), i_{f_{tr,s}}) - \mathcal{P}(g(\mathcal{E}_{p}(R), q_{f}), i_{f_{s}})}\right)$$

# **Semantic Hilbert Space for Interactive Image Retrieval**

Amit Kumar Jaiswal<sup>\*</sup> Haiming Liu<sup>\*</sup> Ingo Frommholz<sup>†</sup> \*University of Bedfordshire <sup>†</sup> University of Wolverhampton

# **Projective Transformation Symmetry Loss**

# Is farm with crops





## **Conclusion:**

Our proposed model is a learning-based, but generalised approach that uses Hilbert space formalism [1]. • Our model captures the implicit contextual information among an image and textual query to enhance the image retrieval. • The proposed model generalises in a classical manner by representing textual and image queries via modality distribution (projective

- transformation).
- **References:** 
  - and knowledge management (pp. 59-68).
  - Vision and Pattern Recognition (pp. 3596-3605).

• Outperforms strong image retrieval methods [2] on benchmark datasets.

[1] Piwowarski et al. (2010, October). What can quantum theory bring to information retrieval. In Proceedings of the 19th ACM international conference on Information

Hosseinzadeh, M., & Wang, Y. (2020). Composed query image retrieval using locally bounded features. In Proceedings of the IEEE/CVF Conference on Computer

# **ICTIR 2021** July 11, 2021, Virtual Event, Canada

| MIT States         |                             |                             | Fashion200k       |                             |                   |  |
|--------------------|-----------------------------|-----------------------------|-------------------|-----------------------------|-------------------|--|
| Metrics - Recall@K |                             |                             |                   |                             |                   |  |
| K=1                | K=5                         | K=10                        | K=1               | K=10                        | K=50              |  |
| $11.9^{\pm 0.2}$   | $31.0^{\pm 0.5}$            | $42.0^{\pm 0.8}$            | $12.3^{\pm 1.1}$  | $40.2^{\pm 1.7}$            | $61.8^{\pm 0.9}$  |  |
| $12.3^{\pm 0.5}$   | $31.9^{\pm0.7}$             | $42.9^{\pm 0.9}$            | $13.0^{\pm 0.6}$  | $40.5^{\pm 0.7}$            | $62.4^{\pm 0.6}$  |  |
| $10.1^{\pm 0.3}$   | $27.7^{\pm 0.7}$            | $42.9^{\pm 0.9}$            | $12.9^{\pm 0.7}$  | $39.5^{\pm 2.1}$            | $61.9^{\pm 1.9}$  |  |
| $12.2^{\pm 0.4}$   | $31.9^{\pm0.3}$             | $41.3^{\pm 0.3}$            | $14.01^{\pm 0.6}$ | $42.5^{\pm0.7}$             | $63.8^{\pm 0.8}$  |  |
| $12.6^{\pm 1.0}$   | $31.6^{\pm 1.0}$            | $43.1^{\pm 0.3}$            | $15.2^{\pm 0.4}$  | $43.4^{\pm 0.2}$            | $63.8^{\pm 1.2}$  |  |
| $14.29^{\pm 0.6}$  | $34.67^{\pm 0.7}$           | $46.6^{\pm 0.6}$            | $16.26^{\pm 0.6}$ | $46.90^{\pm 0.3}$           | $71.73^{\pm 0.6}$ |  |
| $14.2^{\pm 0.6}$   | <b>36.4</b> <sup>±0.1</sup> | <b>48.2</b> <sup>±0.3</sup> | $23.2^{\pm0.4}$   | <b>55.6</b> <sup>±1.0</sup> | $74.2^{\pm0.6}$   |  |

| el               | MIT States | Fashion200k |
|------------------|------------|-------------|
| 5                | 48.2       | 55.6        |
| space            | 46.0       | 49.2        |
| PT               | 47.9       | 52.4        |
| feedback $(f_l)$ | 46.9       | 53.0        |
| pping $(f)$      | 45.4       | 52.6        |

Ablation Test