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Problem Formulation and Contribution
Goal: To model the user expressive information needs that delineates their cognitive aspects
in an image retrieval task.
Problem Settings: The input consists of a state vectors of image ~i and a textual query ~q.
These textual-visual query uses projection operation P(q, i) as 〈q|i〉. The feature space for
both modalities are generated using pre-trained embedding models (Ep(.)). The state vector
of retrieved target image (~r). The task is framed as a maximisation problem to learn the
multimodal representation
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Contributions: A quantum-inspired modelling approach [1] to the user multi-semantic in-
formation needs that
• present a unified framework - SEMANTIC HILBERT SPACE (SHS), to characterise textual-

visual (multimodal) information need in an interactive image retrieval task.
• magnifies model capability using a projective transformation strategy that inherently maps

the feature space of input image to the target image feature space via complex-valued text
encoding.

• significantly improves on MIT States and Fashion200k datasets over the existing deep net-
works baseline.

Methodology
Feature Embedding:
• Input Image Feature - Ep(i) = if ∈ Rk
• Input Textual Feature - Et(q) = qf ∈ Rl
• Mapping of query image to the target

image in a complex-valued space

M : Rd −→MD ∈ Rdxd

Rot(PT ) = eıM(qf )

MI : Rk −→ Cd

IM = Rot(PT )MI(if )

Information Need Function:

g(if , qf ) = αf(IM ) + βfl(IM , if , qf )
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Projective Transformation Symmetry Loss
Function:
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Model & Experiments
Semantic Hilbert Space Model

Qualitative Examples & Results

(a) MIT States dataset

(b) Fashion200k dataset

Results

Ablation Test

Conclusion:
Our proposed model is a learning-based, but generalised approach that uses Hilbert space formalism [1].
• Our model captures the implicit contextual information among an image and textual query to enhance the image retrieval.
• The proposed model generalises in a classical manner by representing textual and image queries via modality distribution (projective

transformation).
• Outperforms strong image retrieval methods [2] on benchmark datasets.
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