
Neural ODEs: Ordinary Differential Equations
meets Machine Learning

Amit Kumar Jaiswal
UCL

October 4, 2022

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 1 / 27



1 Introduction

2 Machine learning

3 Ordinary Differential Equations

4 Neural ODE

5 What are we trying to do?

6 Appendix

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 2 / 27



Introduction

What are Neural ODEs?

• Neural ODEs1 are deep neural network models using ordinary
differential equations

• Unlike classical neural networks, the hidden layer in an Neural
ODEs is defined as a black box that uses an ODE solver

• They have multiple advantages: constant memory cost, better
results in continuous time series data and they are sometime
more natural to use.

1Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018).
Neural ordinary differential equations. Advances in neural information processing
systems, 31.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 3 / 27



Machine learning

Neural Network - Forward and Backward Pass

The simplest
example of a neural network layer is

h = σ(Wx + b)

where σ is an activation function, W
is a weight matrix and b a bias vector.
The goal is to minimise the training
error for every input of the training set.
It requires derivatives computation of the

loss with respect to the parameters.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 4 / 27



Machine learning Backpropagation

Backpropagation [1]

Let θ be the parameters of the network. It needs θ∗ which minimise
the loss function in order to have the in-sample error as small as
possible.

Compute the partial derivatives of the loss function with respect to
the parameters, ∂L

∂θ
, and find θ∗ such that these derivatives are 0.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 5 / 27



Machine learning Gradient descent

Gradient Descent [2]

It works as follows: at each step of the process, it take a step in the
opposite direction of the gradient of the function at the current point.

More formally, if a function g : Rm → R, m > 1, differentiable and a
point x0 ∈ Rm, we have that if

xn+1 = xn − γn∇g(xn), n ≥ 0

for γn ∈ R+ small enough, then g(xn) ≥ g(xn+1).

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 6 / 27



Machine learning Residual neural network

Residual neural network
A residual neural network [3], also called ResNet, is a neural network
which has more connections. Indeed, a layer receives as input the
outputs of the previous layer and its inputs.

In these networks, the
output of the (k + 1)th layer

is given by

zk+1 = zk + fk(zk)

, where fk is the function of
the kth layer and its

activation.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 7 / 27



Ordinary Differential Equations

First Order Ordinary Differential Equations
An ordinary differential equation (ODE) [4] is an equation that
describes the changes of a function through time.

Definition
Let Ω ⊆ R× RN an open set. Let f : Ω → RN .
A first order ODE takes the form

∂u

∂t
(t) = f (t, u(t))

A solution for this ODE is a function u : I → RN , where I is an
interval, such that

• u is differentiable on I ,
• ∀t ∈ I , (t, u(t)) ∈ Ω,
• ∀t ∈ I , ∂u

∂t
(t) = f (t, u(t))

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 8 / 27



Ordinary Differential Equations

ResNets and Euler

If we look back at the formula in the ResNet, we can see that this is
a special case of the formula for Euler method

zk+1 = zk + hfk(zk),

when h = 1.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 9 / 27



Neural ODE Introduction

Explicit and implicit layers

There is two different ways to define a layer : explicitly or implicitly
[5]. When we define a layer explicitly, we specify the exact sequence
of operations to do from the input to the output layer.

We can also define them implicitly: specifying the condition, we want
the layer’s output to satisfy.

Definition
An explicit layer is defined by a function f : X → Y . For an implicit
layer, we give a condition that a function g : X × Y → Rn should
satisfy. For example we can search for a y such that g(x , y) = 0.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 10 / 27



Neural ODE Introduction

Neural ODE

In a residual neural network, the output for an input x is a
composition of functions. We want to extract all these individual
layers to only have one "shared" layer.

Definition
A neural ODE network (or ODE-Net) [5, 6, 7] takes a simple layer as
a building block. This “base layer” is going to specify the dynamics of
an ODE.

ODE-Net enable us to replace layers of neural networks with a
continuous-depth model.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 11 / 27



Neural ODE Introduction

Comparison with ResNets

Let us return to ResNets to give intuition behind this definition.
We know that any output of the k th layer of a residual network can
be computed with the function

F (zt , t; θ) = f (zt , t; θ) + zt

where t = k − 1 and θ represents the parameters of the layers.

Thus, in the ResNet, the output for the input z0 = x is a composition
of the functions F (zt , t; θ).

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 12 / 27



Neural ODE Introduction

We can then view the variables zt as a function z of t. For example,
z1 := z(1) = f (x , 0) + x .

With that, we can write F (zt , t; θ) = F (z(t), t; θ).
Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 13 / 27



Neural ODE Introduction

We can see that in ResNets, the outputs of each layer are the
solutions of an ODE using Euler’s method. The ODE from which it is
a solution is

∂z

∂t
(t) = f (z(t), t; θ).

However, to find the solution to this Cauchy problem, we need the
initial value of z , which is z(t0) := z0 = x . We obtain the following
Cauchy problem: {

∂z
∂t
(t) = f (z(t), t; θ)

z(t0) = x
(1)

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 14 / 27



Neural ODE Forward and Backward pass

Forward and Backward pass [7]
The output z(tN) of an ODE-Net with the input z(t0) is defined by
the Cauchy problem (1), which depends on the parameters z(t0), t0, θ.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 15 / 27



Neural ODE Forward and Backward pass

Adjoint method

Let L be a loss function. To minimise this loss function L, we need
gradients with respect to the parameters z(t0), t0, tN , θ. To achieve
that, we can determine how the gradient of the loss depends on the
hidden state z(t) for each t, which is

a(t) =
∂L

∂z(t)
(2)

This quantity is called the adjoint. We would like to determine its
dynamics, so we need to compute its derivative with respect to t.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 16 / 27



Neural ODE Forward and Backward pass

Adjoint method

With a continuous hidden state, we can write the transformation
after an ε change in time as :

z(t + ε) =

∫ t+ε

t

f (z(t), t, θ)dt + z(t). (3)

Let G : ε 7→ z(t + ε). We can apply the Chain rule and we have

∂L
∂z(t)

=
∂L

∂z(t + ε)

∂z(t + ε)

∂z(t)
.

In other words
a(t) = a(t + ε)

∂G (ε)

∂z(t)
. (4)

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 17 / 27



What are we trying to do?

Modelling Irregular time series with measurements

Figure: Irregular time series with randomness in observations time-points,
where X 1

t ,X
2
t ,X

3
t represents measurements, including PSA, Gland volume

and Max. tumour diameter
Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 18 / 27



What are we trying to do?

References I

Roger Grosse.
Csc321 lecture 6: Backpropagation.
http://www.cs.toronto.edu/~rgrosse/courses/csc321_
2017/slides/lec6.pdf.

Yaser S. Abu-Mostafa, Malik Magdon-Ismael, and Hsuan-Tien
Lin.
Learning from data: A short course.
2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2016.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 19 / 27

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec6.pdf
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec6.pdf


What are we trying to do?

References II

David Francis Griffiths and Desmond J Higham.
Numerical methods for ordinary differential equations: initial
value problems, volume 5.
Springer, 2010.

Zico Kolter, David Duvenaud, and Matt Johnson.
Deep implicit layers - neural odes, deep equilibirum models, and
beyond.
https://implicit-layers-tutorial.org/.

Ayan Das.
Neural ordinary differential equation (neural ode).
https:
//ayandas.me/blog-tut/2020/03/20/neural-ode.html.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 20 / 27

https://implicit-layers-tutorial.org/
https://ayandas.me/blog-tut/2020/03/20/neural-ode.html
https://ayandas.me/blog-tut/2020/03/20/neural-ode.html


What are we trying to do?

References III

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K
Duvenaud.
Neural ordinary differential equations.
Advances in neural information processing systems, 31, 2018.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 21 / 27



Appendix

Cauchy Problems

Definition
An initial condition (IC) is a condition of the type

u(t0) = u0

where (t0, u0) ∈ Ω is given.

Definition
A Cauchy problem is an ODE with IC{

∂u
∂t
(t) = f (t, u(t))

u(t0) = u0

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 19 / 27



Appendix One-step methods

One-step methods

It is not always possible to explicitly find a solution to a Cauchy
problem.

However, let T > 0 such that the solution u exists on [t0, t0 +T ] and
let n ⩾ 2 be a natural. Let t0 < ... < tn ∈ [t0, t0 + T ] where
tn = t0 + T . We obtain a finite number of points (u0, . . . , un) such
that:

∀i ∈ {0, . . . , n}, ui ≈ u(ti).

To compute those points, we use one-step methods which compute
the points ui+1 from the previous point ui , the time ti and the step
hi := ti+1 − ti .

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 20 / 27



Appendix Euler’s method

Euler’s Method

Euler’s method is a one-step method with a constant step h.
It is similar to a Taylor development, the idea is to compute u(ti+1)
using the formula

u(ti+1) ≈ u(ti) + h
∂u

∂t
(ti) (5)

where
∂u

∂t
(ti) = f (ti , u(ti)).

for a function f .

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 21 / 27



Appendix Adjoint method

Adjoint method

∂a

∂t
(t) = lim

ε→0+

a(t + ε)− a(t)

ε

= lim
ε→0+

a(t + ε)− a(t + ε)∂G(ε)
∂z(t)

ε

= lim
ε→0+

a(t + ε)− a(t + ε)∂z(t)+εf (z(t),t,θ)+O(ε2)
∂z(t)

ε

= lim
ε→0+

a(t + ε)− a(t + ε)(1+ ε∂f (z(t),t,θ)
∂z(t)

+ O(ε2))

ε

= lim
ε→0+

−εa(t + ε)∂f (z(t),t,θ)
∂z(t)

+ O(ε2)

ε

= −a(t)
∂f (z(t), t; θ)

∂z(t)
Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 22 / 27



Appendix Adjoint method

Adjoint method

We now have the dynamics of a(t)

∂a(t)

∂t
= −a(t)

∂f (z(t), t; θ)

∂z(t)
(6)

As we are searching for a(t0) = ∂L
∂z(t0)

, we need to solve an ODE for
the adjoint backwards in time because the value for a(tN) is already
known. The constraint on the last time point, which is simply the
gradient of the loss with respect to z(tN),

a(tN) =
∂L

∂z(tN)
,

has to be specified to the ODE solver.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 23 / 27



Appendix Adjoint method

Adjoint method

Then, the gradients with respect to the hidden state can be
calculated at any time, including the initial value.

If we want to compute the gradient with respect to the parameters θ,
we have to evaluate another integral, which depends on both z(t)
and a(t),

∂L
∂θ

= −
∫ t0

tN

a(t)
∂f (z(t), t; θ)

∂θ
dt. (7)

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 24 / 27



Appendix Adjoint method

Adjoint method

To avoid computing each ODE on its own, we can do all of them at
the same time. To do that we can generalize the ODE to

∂

∂t

zθ
t

 (t) = faug ([z(t), θ, t]) :=

f ([z(t), θ, t])0
1

 ,

aaug (t) :=

 a
aθ
at

 (t), a(t) =
∂L

∂z(t)
, aθ(t) =

∂L
∂θ(t)

, at(t) :=
∂L
∂t(t)

.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 25 / 27



Appendix Adjoint method

Adjoint method

The jacobian of faug has the form

∂faug
∂[z(t), θ, t]

([z(t), θ, t]) =

∂f
∂z

∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 (t)

where each 0 is a matrix of zeros with the corresponding dimensions.
We can inject aaug in (6) and we get

∂aaug (t)

∂t
= −[a(t) aθ(t) at(t)]

∂faug
∂[z(t), θ, t]

([z(t), θ, t])

= −
[
a
∂f

∂z
a
∂f

∂θ
a
∂f

∂t

]
(t).

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 26 / 27



Appendix Adjoint method

Adjoint method

We can also get gradients with respect to t0 and tN by integrating
the last component, −a(t)∂f (z(t),t;θ)

∂t(t)
, and by using the Chain rule.

We have

∂L
∂t0

= at(t0) = at(tN)−
∫ t0

tN

a(t)
∂f (z(t), t, θ)

∂t
dt;

∂L
∂tN

=
∂L

∂z(tN)

∂z(tN)

∂tN
= a(tN)f (z(tN), tN , θ).

With this generalised method, we have gradients for all possible
inputs to a Cauchy problem solver.

Amit Kumar Jaiswal UCL Neural ODEs October 4, 2022 27 / 27


	Introduction
	Machine learning
	Backpropagation
	Gradient descent
	Residual neural network

	Ordinary Differential Equations
	Neural ODE
	Introduction
	Forward and Backward pass

	What are we trying to do?
	Appendix
	One-step methods
	Euler's method
	Adjoint method


