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Background

Uncertainty in information seeking (IS) decreases as the user
proceeds through the seeking process [Chowdhury 2011].
In general, user interaction keep searchers (in an information
seeking process as Foraging [Wittek 2016, Pirolli 1999]) to not
consume the information goal.
Reinforcement learning to generalise user (or forager) search
behaviour by their action representation and
transformation [Chandak 2019].
Simultaneous happening of risk and ambiguity (aspect of
uncertainty) during the IS process in turn converges with the
quantum theory [Wittek 2016, Piwowarski 2010]
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What’s new here?

To guide searcher (or forager) during information seeking
process (especially information exploration) by means of
Reinforced Foraging mechanism.

Reinforced Foraging: Reinforcement learning help’s us devise the
Information Foraging strategy to follow the feat of information
seeking.
Assumption: We consider uncertainty in IS to be a problem that is
closely related to information need.

Representation of user actions (i.e. queries as information need)
follows the quantum probabilistic
constructs [Van Rijsbergen 2004].
Theoretical framework that describes guided information
seeking powered by quantum-parameterised reinforced foraging.
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Trivia

Why RL?
There is no supervision, only a reward signal.
Feedback is delayed, not instantaneous.
Agent’s actions effect subsequent data it receives.

Central idea of RL:
Interacts with the environment.
Learns from experience.
The target is to get the maximum expected cumulative rewards.

Central idea of Information Foraging theory (IFT):
Searches via information patches and constantly makes decision
among it.
Learns from enrichment.
The target is to get as much relevant information in as little time as
possible.
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Markov Decision Process for RL

Figure: Recall Markov Property
"The future is independent of the past given the present"

An information environment for reinforcement learning follows
Markov decision process.
In RL, the agent changes the environment.
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Reinforcement Learning

Figure: From left to right: Scenario of Reinforcement Learning and its process
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Information Foraging Theory

A theory of human information seeking, eventually derived from
optimal foraging theory [Pirolli 1999].
Adaptive process with regard to optimal use of knowledge about
expected information value, expected cost of acquiring relevant
information.
Activities associated with seeking, acquiring, and dealing
information sources
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RL with IFT: Reinforced Foraging

Hypothesis: Information seeker as Forager [Wittek 2016] as RL
agent.
Seeker adopts foraging behaviour (explore as well as exploit).
Reinforcement learning process enhanced by such type of
information seekers - so called, an adaptive RL agent.
IFT can resolve RL limitation of delayed reward i.e. "why every
step of seeker is important".
Foraging behaviour can enhance "experience" in reinforcement
learning mechanism.
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Apply to Information Seeking

RL agent "interact with the environment", whereas in IS "the
process of seeking may provide the learning required to satisfy
one’s information need".
"Learn by doing with delayed reward" aspect of RL when meets
IFT lead to IS process.
IFT supports RL in "exploration & exploitation".

Available actions as "exploration".
Positively rewarded actions are drawn as "exploitation".

IS behaviour pattern when meets this trade-off makes user
actions uncertain [Wittek 2016].

Such behaviour in IFT is mostly sequential.
This type of uncertainty can be described using quantum theory.

IFT can resolve RL limitation of delayed reward i.e. "why every
step of seeker is important".
Foraging behaviour can enhance "experience" in reinforcement
learning mechanism.
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Preliminaries

Quantum Probability Theory: Probability theory based on Hilbert
space formalism
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Constructs of quantum-inspired RL framework

Agent : In our framework, the agent is a forager (information
seeker).

Action : The agent executes query (as action |at〉, receives
states (|st〉) and a scalar reward (Rei,ai

).
Environment : Receives agent action (query) and emits

observation (|st+1〉 with corresponding reward.
State : In our case, a state can be seen as the product of the

probability amplitudes of global-local projection (word
meanings) for all words of a query.

State Transition : We use a feedback mechanism to compute the
transition among the states.

Policy : We use stochastic policy network, so called Actor-Critic
reinforcement learning method [Lowe 2017].

Reward : The success value of an agent’s action (|qi〉)
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Quantum-inspired Reinforcement Learning
Framework
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Contributions

Quantum-like reinforcement learning framework that incorporates
Information Foraging strategy for information seeking to

model the information foragers’ behaviour, where the Actor-critic
method to enhance the agent’s experience in a text
query-matching task.
learn the policy where query representation is parameterised
using quantum language models.
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Conclusion

An initial attempt to encapsulate the foraging behaviour in a
principled RL framework.
Characterising information seeking in a formal behavioural model
that delineates uncertainty in users’ information need.
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Reinforcement Learning Setup
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