Semantic Hilbert Space for Interactive Image Retrieval

Amit Kumar Jaiswal, Haiming Liu, Ingo Frommholz

Outline

- What and Why?
- Background & Motivation
- Multimodal Information Need
 - Projective Transformation
- Multimodal Information Need in Image Retrieval
- Complex-valued CNN
- The Framework Semantic Hilbert Space
- Experiment
- Conclusion and Future Work

What and Why?

What are we trying to do?

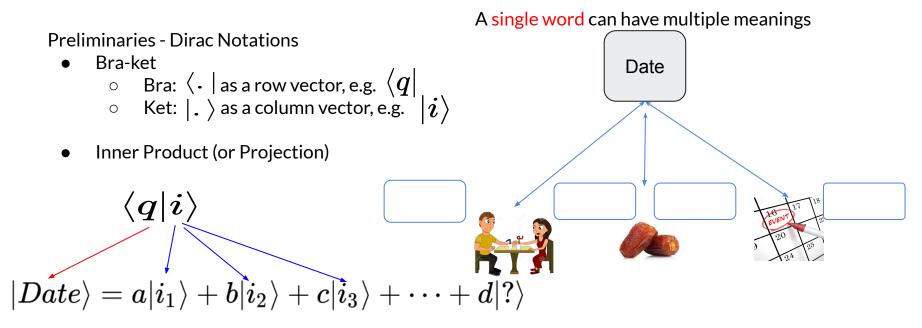
- Construct a method to explicate the user's multimodal information need (IN) into a complex-valued vector space (Hilbert space) for an image retrieval task.
- The modelling method should be capable of performing transformations based on modality features.

Why are we doing this?

- Such an expressive user's information need can characterise their cognitive aspects.
- The complex-valued vector space can be leveraged by various techniques (neural and deep networks) to accomplish several IR and NLP tasks, such as
 - Text Representation [1]
 - Session Search [2]
 - Text Matching [3]
 - Multimodal Fusion [4]

Wang, B., Li, Q., Melucci, M., & Song, D. (2019, May). Semantic Hilbert space for text representation learning. In *The World Wide Web Conference*.
 Li, Q., Li, J., Zhang, P., & Song, D. (2015, August). Modeling multi-query retrieval tasks using density matrix transformation. In *ACM SIGIR* Li, Q., Wang, B., & Melucci, M. (2019, June). CNM: An Interpretable Complex-valued Network for Matching. In *NACCL* Li, Q., Gkoumas, D., Lioma, C., & Melucci, M. (2021). Quantum-inspired multimodal fusion for video sentiment analysis. *Information Fusion*, 65, 58-71.

Background & Motivation



Conversely, a still image manifest multiple words distinctively

Multimodal Information Need

- Input query consists of
 - $egin{array}{ccc} & ext{ Textual query } & & & |q
 angle \ & \circ & ext{ Image query } & & |i
 angle \ \end{array}$
- Corresponding embedding vectors •
 - Textual features uses BERT: $\mathcal{E}_t(q) = |q_f\rangle$ 0
 - Visual features uses ResNet-34: $\mathcal{E}_p(i) = \ket{i_f}$ 0
- Generate projector to learn textual-visual representation
 - Projection operation 0

 $\mathcal{P}(q,i) = \langle q | i
angle$

- Based on our hypothesis: •
 - The textual features are used to encode the transformation process of image features Ο (the input part) and target image features in a common space
- Designates an objective function

$$\max_{\theta} sim(\mathcal{P}(q, i; \theta), \mathcal{E}_p(R))$$

Projective Transformation (PT)

- We infer that input image query and target image are projective transformations of each other in a complex-valued vector space.
- The input image, textual query and target image are represented as a state vector

$$\overrightarrow{i}_{,} \overrightarrow{q}_{,} \overrightarrow{r}$$

$$P_T(\overrightarrow{i}) \xrightarrow[q]{\rightarrow} \overrightarrow{r} \implies P_T(\overrightarrow{r}) \xrightarrow[q]{\rightarrow} \overrightarrow{i}$$

• The projective transformation symmetry in above can transform the target image to the input image through the complex conjugate on the textual features.

Multimodal Information Need

• Learn textual features as PT of input image features via a mapping function

$$\circ$$
 $M: \mathbb{R}^d \longrightarrow M_D \in \mathbb{R}^{d imes d}$

• Projective transformation

$$Rot(P_T)=e^{\imath M(|q_f
angle)}$$

- Mapping function (M) uses two fully-connected layers with non-linear activation and M_D depicts the matrix diagonal
- Mapping of input image feature ($\mathcal{E}_p(i) = |i_f\rangle$ to the complex space

$$M_I: \mathbb{R}^k \longrightarrow \mathbb{C}^d$$

• The multimodal information need is represented as

$$I_M = Rot(P_T)M_I(\ket{i_f})$$

 M₁ is an image mapping function implemented using two-fully connected layers

Complex axis d

Multimodal Information Need

• Based on the objective (similarity) function, we maximise the similarity between features of multimodal IN and the target image features.

Complex axis d

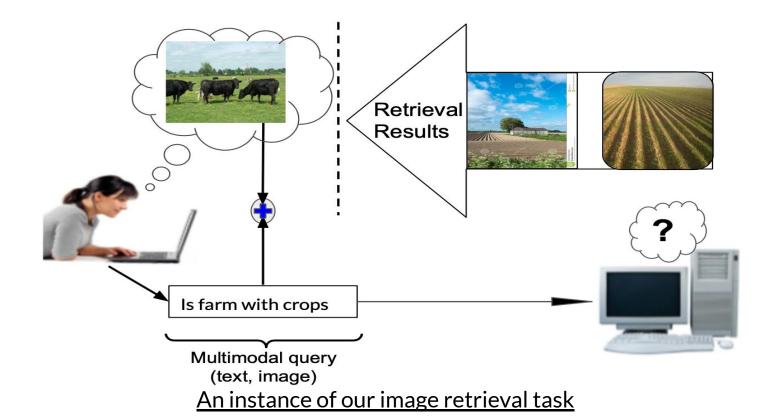
 \circ Learn the mapping function from

$$f:\mathbb{C}^d\longrightarrow\mathbb{R}^k$$

- To enrich the local features distributed across textual-visual features, we learn another mapping function f_1 as below
 - Visual guided feedback
 - Two fully connected layers with a single convolution layer
- The overall representation after composing textual-visual features

$$g(i_f,q_f) = lpha f(I_M) + eta f_l(I_M,i_f,q_f)_{ig|i
angle}$$

Multimodal IN in Image Retrieval



Complex-valued CNN

To learn the multimodal information need, a complex-valued based CNN is constructed based on [5, 6, 7] which contains:

- Encoder network
 - A fully connected network, where convolutional layer

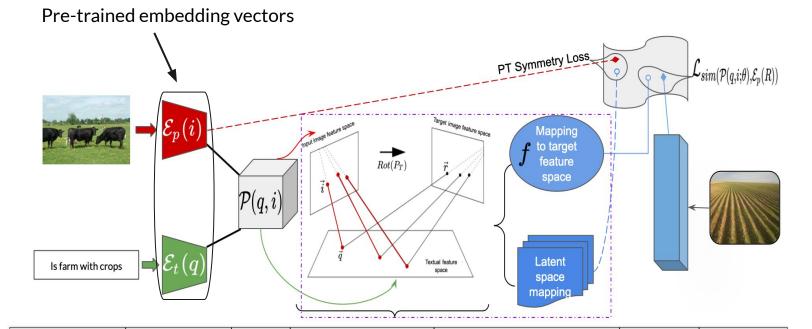
$$egin{aligned} &\sum_{f=1}^F (I_f.\,W_m) = \sum_{f=1}^F \operatorname{Re}(I_f).\operatorname{Re}(W_m) - \operatorname{Im}(I_f).\operatorname{Im}(W_m)) \ &+ j \sum_{f=1}^F (\operatorname{Re}(I_f).\operatorname{Im}(W_m) + \operatorname{Im}(I_f).\operatorname{Re}(W_m)) \end{aligned}$$

- Decoder network
 - To generate the original extracted textual features and image features
 - Image and text decoder are depicted as D_i and D_a

5. Li, Q. et. al. (2018, July). Quantum-Inspired Complex Word Embedding. In *Proceedings of The Third Workshop on Representation Learning for NLP*, ACL 6. Sordoni, A., Nie, J. Y., & Bengio, Y. (2013, July). Modeling term dependencies with quantum language models for ir. In *Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval*.

7. Trabelsi, Chiheb, et al. "Deep Complex Networks." International Conference on Learning Representations. 2018.

The Framework - Semantic Hilbert Space



(Text-image) query Feature extraction Projection Projective transformation Multimodal representation space Target feature Target Image

Experiment

Detect	MIT States			Fashion200k			
Dataset	Metrics - Recall@K						
	K=1	K=5	K=10	K=1	K=10	K=50	
Show and Tell [192]	$11.9^{\pm 0.2}$	$31.0^{\pm 0.5}$	$42.0^{\pm 0.8}$	$12.3^{\pm 1.1}$	$40.2^{\pm 1.7}$	$61.8^{\pm 0.9}$	
Relation Network [166]	$12.3^{\pm 0.5}$	$31.9^{\pm 0.7}$	$42.9^{\pm 0.9}$	$13.0^{\pm 0.6}$	$40.5^{\pm 0.7}$	$62.4^{\pm0.6}$	
Film [145]	$10.1^{\pm 0.3}$	$27.7^{\pm 0.7}$	$42.9^{\pm 0.9}$	$12.9^{\pm0.7}$	$39.5^{\pm 2.1}$	$61.9^{\pm 1.9}$	
TIRG [193]	$12.2^{\pm 0.4}$	$31.9^{\pm0.3}$	$41.3^{\pm 0.3}$	$14.01^{\pm 0.6}$	$42.5^{\pm0.7}$	$63.8^{\pm 0.8}$	
(+) BERT	$12.6^{\pm 1.0}$	$31.6^{\pm 1.0}$	$43.1^{\pm 0.3}$	$15.2^{\pm0.4}$	$43.4^{\pm0.2}$	$63.8^{\pm 1.2}$	
Composed Query [75]	$14.29^{\pm0.6}$	$34.67^{\pm 0.7}$	$46.6^{\pm 0.6}$	$16.26^{\pm 0.6}$	$46.90^{\pm0.3}$	$71.73^{\pm 0.6}$	
SHS (Ours)	$14.2^{\pm 0.6}$	36.4 ^{±0.1}	48.2 ^{±0.3}	$23.2^{\pm0.4}$	55.6 ^{±1.0}	74.2 ^{±0.6}	

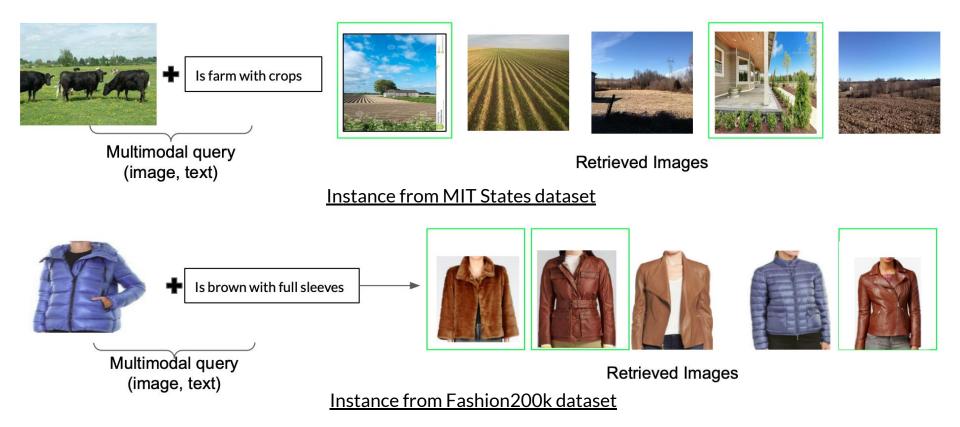
Table 1: Models on the MIT States and Fashion200k datasets. Models tagged with (+) indicate that they are extended by ourselves.

Ablation Test

Model	MIT States	Fashion200k	
SHS	48.2	55.6	
(+) Real space	46.0	49.2	
$(-) \mathscr{L}_{PT}$	47.9	52.4	
(-) visual guided feedback (f_l)	46.9	53.0	
(-) image mapping (f)	45.4	52.6	

Table 2: Ablation study of the proposed model on the MIT States and Fashion200k datasets. Components tagged with (+) and (-) indicate the presence and absence in the proposed SHS model.

Qualitative Examples



Conclusion and Future Work

Our proposed model is a learning based, but generalised approach that uses Hilbert space formalism

- The model captures the implicit contextual information among an image and textual query to enhance the image retrieval.
- The model generalises in a classical manner by representing textual and image queries via modality distribution (projective transformation).
- Further explore the potential of semantic Hilbert space for Conversational image retrieval.

Thank you!